-
1 drive motor coolant temperature
Automobile industry: DMCTУниверсальный русско-английский словарь > drive motor coolant temperature
-
2 напор температурный
напор температурный
Разность темп-р среды и стенки (или границы раздела фаз) или двух сред, м-ду к-рыми идет теплообмен. Различают местный и ср. н. т. Местный н. т. — разность темп-р среды и стенки в данном сечении тешюобм. системы. Ср. н. т. — усредн. по всей поверхности теплообмена. Произвел, значения н. т. на коэфф. теплопередачи опред. кол-во теплоты, передав, от одной среды к др. через ед. поверхности нагрева в ед. времени, т. е. плотность теплового потока.
[ http://metaltrade.ru/abc/a.htm]Тематики
EN
Русско-английский словарь нормативно-технической терминологии > напор температурный
-
3 отключаемый привод вентилятора
Русско-английский политехнический словарь > отключаемый привод вентилятора
-
4 режим
( работы) behavior, condition, duty, operation, mode, performance, run, use, process, regime, schedule, state* * *режи́м м.1. regime, condition; вчт. operation, modeвключа́ть режи́м ( работы) — turn on a conditionвыключа́ть [снима́ть] режи́м ( работы) — remove a conditionпереводи́ть в режи́м, напр. пе́редачи радио — place in, e. g., the TRANSMIT conditionпереходи́ть в режи́м ре́верса — go into reverse (operation)переходи́ть с, напр. одного́ режи́ма управле́ния на друго́й — change between, e. g., control modesрабо́тать в режи́ме, бли́зком к преде́льному [крити́ческому] — be in marginal operation2. ( совокупность параметров) conditionsавари́йный режи́м — emergency operationавтоколеба́тельный режи́м рад., элк. — free-running (operation)автоно́мный режи́м — off-line operation, off-line mode, off-line conditionрабо́тать в автоно́мном режи́ме — operate off-lineрежи́м авторота́ции ав. — autorotation [windmilling] regimeакти́вный режи́м ( транзистора) — active regionба́зисный режи́м ( в энергетике) — base load operationрежи́м больши́х сигна́лов радио, элк. — large-signal operationбу́ферный режи́м ( аккумуляторной батареи) — floating serviceрежи́м бы́стрых электро́нов тлв. — high-velocity scanning, high-velocity-beam operationрежи́м ва́рки цел.-бум. — cooking conditionвзлё́тный режи́м — take-off regimeрежи́м висе́ния ав. — hovering, hover modeвихрево́й режи́м — eddy flowво́дный режи́м — water regime, hydrolycityгаранти́йный режи́м — warranted performance, warranted conditionрежи́м гига́нтских колеба́ний — giant oscillationsрежи́м горе́ния, детонацио́нный — knocking combustionрежи́м горе́ния, кинети́ческий — kinetic combustionрежи́м движе́ния жи́дкости, напо́рный — forced flowрежи́м движе́ния жи́дкости, поршнево́й — plug flowрежи́м движе́ния жи́дкости, пузы́рчатый — bubble flowрежи́м движе́ния жи́дкости, расслоё́нный — stratified flowрежи́м заполне́ния ( водохранилища ГЭС) — rate of inflowрежи́м заря́да ( аккумуляторной батареи) — charging rateрежи́м заря́да, коне́чный — finishing rateрежи́м заря́д — разря́д ( аккумуляторной батареи) — cycle serviceиспо́льзовать батаре́ю в режи́ме заря́д — разря́д — operate a battery on cycle serviceи́мпульсный режи́м — pulsed operationрежи́м кипе́ния — boiling condition, boiling regimeрежи́м кипе́ния, плё́ночный — film boilingрежи́м кипе́ния, пузы́рчатый — nucleate boilingкре́йсерский режи́м — cruising regime, cruising mode, cruising conditionsкрити́ческий режи́м — criticality, critical conditionsрежи́м ма́лого га́за, земно́го ав. — ground idling conditionsрежи́м ма́лых сигна́лов — small-signal conditionрежи́м ме́дленных электро́нов тлв. — low-velocity scanning, low-velocity-beam operationмногомо́довый режи́м — multimoding, multimode operationрежи́м модуля́ции добро́тности — Q-spoiled [Q-switched] modeрежи́м молча́ния ( работы усилителя) — no-signal condition, no-signal stateмонои́мпульсный режи́м — giant oscillationsрежи́м нагру́зки — under-load operationнадкрити́ческий режи́м ( ядерного реактора) — supercriticalityнапряжё́нный режи́м — heavy dutyрежи́м незатуха́ющих колеба́ний — CW modeненорма́льный режи́м — abnormal [defective, faulty] conditionнерасчё́тный режи́м — off-design conditionнестациона́рный режи́м — unsteady conditionномина́льный режи́м — design conditionрежи́м обедне́ния ( транзистора) — depletion modeрежи́м обжа́тий метал. — draughting scheduleрежи́м обогаще́ния ( транзистора) — enhancement modeрежи́м ожида́ния ав. — holding patternвыполня́ть полё́т в режи́ме ожида́ния — fly the holding patternоконе́чный режи́м ( в радиорелейной связи) — terminal operationоперати́вный режи́м вчт. — on-line operationрежи́м остано́вки — shutdown conditionрежи́м отка́чки — exhaust scheduleрежи́м переда́чи радио — transmit conditionрежи́м переключе́ния добро́тности — Q-spoiled modeперехо́дный режи́м — transient conditionпериоди́ческий режи́м — periodic dutyпи́ковый режи́м — peaking operationрежи́м пласта́, водонапо́рный нефт. — water driveпласт рабо́тает в водонапо́рном режи́ме — the oil pool produces [operates] under water driveрежи́м пласта́ га́зовой ша́пки нефт. — gas-cap driveпласт рабо́тает в режи́ме га́зовой ша́пки — the oil pool produces [operates] under gas-cap driveрежи́м пласта́, гравитацио́нный нефт. — gravity drainageпласт рабо́тает в гравитацио́нном режи́ме — the oil pool produces [operates] under gravity drainageрежи́м пласта́ расшире́ния га́за нефт. — gas-expansion driveпласт рабо́тает в режи́ме расшире́ния га́за — the oil pool produces [operates] under gas-expansion driveрежи́м поко́я — quiescent conditionsрежи́м полё́та (напр. по маршруту) — regime of flight, flight condition (e. g., cruise, climb, or descent)режи́м по́лной нагру́зки — full-load conditionsпони́женный режи́м радио — reduced power conditionsла́мпа рабо́тает на пони́женном режи́ме — the tube is under-runпереда́тчик рабо́тает на пони́женном режи́ме — the transmitter operates at reduced powerрежи́м пото́ка — flow condition, flow regime, flow patternрежи́м приё́ма радио — receive conditionрежи́м прогре́ва — warm-upрежи́м проду́вки — blow-downрежи́м прока́тки — rolling scheduleпромысло́вый режи́м — fishing procedureпусково́й режи́м — starting regime, start-up proceduresрежи́м рабо́ты — mode [type] of operationрежи́м рабо́ты, беспи́чковый — nonspiking modeрежи́м рабо́ты дви́гателей ав. — power conditionsрежи́м рабо́ты на ра́зностной частоте́ ( параметрического усилителя) — difference modeрежи́м рабо́ты на сумма́рной частоте́ ( параметрического усилителя) — sum modeрежи́м рабо́ты, номина́льный — rated dutyрежи́м рабо́ты, переме́нный — varying dutyрежи́м рабо́ты, периоди́ческий — periodic dutyрежи́м рабо́ты, пи́чковый — spiking modeрежи́м рабо́ты, повто́рно-кратковре́менный — intermittent cycle, intermittent dutyрежи́м рабо́ты, полуду́плексный — semi-duplex operationRBS режи́м рабо́ты самолё́тного отве́тчика — ATC radar-beacon system operationрежи́м рабо́ты с мно́гими мо́дами — multimoding, multimode operationрежи́м рабо́ты с мно́гими ти́пами колеба́ний — multimoding, multimode operationрежи́м рабо́ты, холосто́й — no-load operationрабо́чий режи́м — (вид работы, функция) operating condition; ( совокупность параметров) operating variables, operating conditionsрежи́м приё́ма явля́ется норма́льным рабо́чим режи́мом радиоприё́мника — the receive condition is the normal operating conditions of the radio setрежи́м разделе́ния вре́мени вчт. — timesharingрасчё́тный режи́м — design conditionрежи́мы ре́зания — cutting conditions, cutting speeds, feeds and depthsскользя́щий режи́м автмт. — zero-overshoot responseрежи́м сма́зки — relubrication intervalsрежи́м срабо́тки ( водохранилища) — rate of usageрежи́м сто́ка — regime of run-offтемперату́рный режи́м — temperature [heat] conditionтемперату́рный режи́м транзи́стора — temperature (rise) of a transistorтеплофикацио́нный режи́м — heat-extraction modeрежи́м тече́ния — flow (condition)типово́й режи́м — standard conditionsтранзи́тный режи́м свз. — through-line operationтяжё́лый режи́м — heavy dutyустанови́вшийся режи́м — steady state, steady-state conditionsрежи́м холосто́го хо́да — no-load conditionsчистоконденсацио́нный режи́м — nonextraction operationэксплуатацио́нный режи́м — operating [working] conditions* * * -
5 режим
1. м. вчт. regime, condition; operation, mode2. м. conditionsрабочий режим — operating condition; operating variables
режим приёма является нормальным рабочим режимом радиоприёмника — the receive condition is the normal operating conditions of the radio set
Синонимический ряд:1. порядок (сущ.) порядок; распорядок2. строй (сущ.) государственный строй; общественный строй; строй -
6 шкала
bar, ( прибора) face, scale, ( устойчивости окраски) step* * *шкала́ ж.
( нормативное значение — совокупность делений, отметок, оцифровки у измерительного устройства) scale; ( ненормативное — употребление для основания шкалы) scale-plate, dialградуи́ровать шкалу́ — calibrate a scaleдви́гаться по шкале́ ( о стрелке прибора) — move over [across, along] the scale [dial]шкала́ отградуи́рована че́рез ка́ждые 5°, 10° и т. п. — the dial is marked every 5°, 10° etc.шкала́ оцифро́вана че́рез ка́ждые 5°, 10° и т. п. — the dial is numbered every 5°. 10°, etc.оцифро́вывать шкалу́ — assign numerical values to the scaleповеря́ть шкалу́ — verify a scale, check the calibration of a scaleрабо́чая часть шкалы́ — the effective range of a scaleрастя́гивать шкалу́ — expand [spread] a scaleсжима́ть шкалу́ — compress a scaleстре́лка дви́жется по шкале́ — the pointer moves over the scaleшкала́ те́сная — the scale is (over) crowdedазимута́льная подви́жная шкала́ навиг. — rotating compass card, rotating compass rose (of a horizontal situation indicator)шкала́ а́томных весо́в — atomic-weight scaleбезно́ниусная шкала́ — direct- drive dialбезнулева́я шкала́ — suppressed-zero scaleшкала́ Боме́ — Baumй (hydrometer) scaleшкала́ Бофо́рта — Beaufort wind scaleшкала́ ви́димости метеор. — visibility scaleшкала́ вре́мени — time scaleшкала́ высо́т картогр. — scale of height, altitude scaleшкала́ глуби́н (напр. сверления) — depth scaleшкала́ гро́мкости — loudness scaleшкала́ грохоче́ния метал. — mesh scaleшкала́ давле́ний — pressure scaleшкала́ да́льности рлк. — range scaleдвусторо́нняя шкала́ — centre-zero scaleшкала́ длин волн — wavelength scaleдугова́я шкала́ — arc scaleшкала́ звё́здных величи́н — magnitude scaleшкала́ звё́здных температу́р — stellar temperature scaleзерка́льная шкала́ — mirror scaleквадрати́чная шкала́ — square-law scaleшкала́ кисло́тности — acidity scaleшкала́ классифика́ции метал. — size scaleколориметри́ческая шкала́ — colour scaleкругова́я шкала́ — circular scaleлогарифми́ческая шкала́ — logarithmic scaleшкала́ настро́йки рад. — tuning dialно́ниусная шкала́ — vernier dialшкала́ отноше́ний (в обработке данных, в статистике) — ratio scaleшкала́ отсчё́та — reference scaleоце́ночная шкала́ — estimation scaleпиргелиографи́ческая шкала́ астр. — pyrheliographic scaleполукру́глая шкала́ — semicircular [fan] dialшкала́ промежу́точных тоно́в полигр. — calibrated step wedgeпро́фильная шкала́ — edge-wise scaleпрямолине́йная шкала́ — straight scaleравноме́рная шкала́ — evenly divided [uniform, linear] scaleшкала́ расстоя́ний кфт. — scale of distanceсе́рая шкала́ опт. — grey scaleшкала́ се́рых тоно́в опт. — grey scaleшкала́ сит — mesh gaugeсме́нная шкала́ — snap-in scaleшкала́ с но́ниусом — vernier scaleшкала́ сходи́мости ав. — convergence scaleшкала́ твё́рдости — hardness scaleтемперату́рная шкала́ — temperature scaleпостро́ить температу́рную шкалу́ — ( в практическом плане) realize a temperature scale; ( в теоретическом плане) define a temperature scaleтемперату́рная, абсолю́тная шкала́ — absolute temperature scaleтемперату́рная, междунаро́дная шкала́ 1927 го́да [МТШ-27] — international temperature scale of 1927, ITS-27температу́рная, междунаро́дная практи́ческая шкала́ 1948 го́да — ( до 1960 года) international temperature scale of 1948, ITS-48; ( после 1960 года) international practical temperature scale of 1948, IPTS-48температу́рная, междунаро́дная практи́ческая шкала́ 1968 го́да [МПТШ-68] — international practical temperature scale of 1968, IPTS-68температу́рная, термодинами́ческая шкала́ — thermodynamic temperature scaleтемперату́рная, термодинами́ческая абсолю́тная шкала́ — absolute thermodynamic temperature scaleтемперату́рная, термодинами́ческая шкала́ Ке́львина — Kelvin's thermodynamic temperature scaleтемперату́рная, термодинами́ческая шкала́ Це́льсия — Celsius thermodynamic temperature scaleтемперату́рная шкала́ термо́метра магни́тной восприи́мчивости [ТШТМВ] — the Berkley-CMN-T-1973 scaleтермометри́ческая, абсолю́тная шкала́ — absolute thermometric scaleшкала́ фокуси́рования — focusing scaleцветова́я шкала́ полигр. — colour [chromatic] scaleшкала́ электромагни́тных волн — electromagnetic spectrumэнергети́ческая шкала́ — energy scale -
7 регулятор
regulator
устройство для поддержания параметра в заданных пределах, или изменения его по заданному закону (программe). — а device, the function of which is to maintain а designated characteristic at а predetermined value or to vary it according to a predetermined plan.
- (часть системы блока или контура регулирования) — control
- (ручка) — control (knob)
set the ind dim control to maximum light intensity.
- аварийной подачи кислорода по высотам — emergency oxygen altitude compensating regulator
-, автоматический — automatic regulator
автоматический или управляемый вручную регулятор предусмотрен для регулирования воздушного или газового потока. — an automatic or manual regulator is provided for contrailing the intake or exhaust airflow.
- весового расхода воздуха (системы кондиционирования) — air mass flow regulator
- времени приемистости — acceleration time adjuster
- входного направляющего апnapata — inlet guide vane control
-, гидро-механический (топливного насоса высокого давления) — hydro-mechanical governor
- громкости — volume control
переменное (регулируемое) сопротивпение уровня для изменения сигнала приемника или усилителя. — а variable resistor for adjusting the loudness of a radio receiver or amplifying device.
- громкости, автоматический — automatic volume control
автоматически поддерживает постоянный уровень выходного сигнала приемника или усилителя. — maintains the output of a radio receiver or amplifier, substantially constant.
- давления — pressure regulator
- давления, автоматический (ард, системы сарd) — (automatic) air pressure regulator
- давления, барометрический — barometric pressure regulator /controller/
- давления в кабине — cabin pressure regulator
- двигателей, электронный (рэд) — electronic engine control
- зазора (тормозных дисков колеса) — wear adjuster
послe растормаживания колеса регулятор зазора автоматически устанавливает необходимый зазор между неподвижными и вращающимися дисками (рис. 32). — wear adjuster keeps the preset working clearance between the rotor and stater plates of wheel brake.
- избыточного давления (рид) (в системе кондиционирования) — (positive) pressure differential regulator, differential pressure regulator
- избыточного давления (рд) (кислородной маски) — differential pressure regulator
- (компенсации) износа (тормозных дисков) — wear adjuster
- компенсации подачи кислорода по высоте — altitude compensating oxygen regulator
- максимальных оборотов (насоса-регулятора) — maximum speed governor
- максимальных оборотов (не допускающий заброса оборотов) — overspeed governor
- малого газа (гтд) — idling speed governor
- направляющего аппарата (pha) — inlet guide vane control (unit)
- напряжения — voltage regulator
устройство для поддержания напряжения генератора в заданных пределах. — а device that maintains or varies the terminal voltage of а generator at а predetermined value.
- напряжения, угольный — carbon-pile voltage regulator
- настройки (регулировочный винт) — adjuster
- настройки клапана перелома характеристик приемистости — acceleration time adjuster
- настройки максимальных оборотов (топливного регулятора) — maximum speed adjuster
- натяжения троса — cable tension adjuster /regulator/
- обогрева — temperature control
- оборотов — speed governor
механизм для поддержания оборотов двигателя (ротора) в заданных пределах. — governor is а mechanism designed to maintain the speed (rpm) of engine (rotor) within reasonably constant limits.
- оборотов воздушного винта — propeller speed governor
при превышении заданного числа оборотов, регулятор поворачивает лопасти воздушного винта в сторону большого шага, а при падении оборотов - в сторону малого шага. — governor is in onspeed condition when its system in neutral position, overspeed blades are moved to higher pitch, underspeed - blades are moved to lower pitch.
- оборотов, всережимный — all-speed governor
- оборотов, гидромеханический — hydraulic (speed) governor
регулятор имеет крыльчатку, работающую в качестве центробежного насоса масла, жидкости. — this governor consists of an impeller acting as а centrifugal pump with oil as fluid.
- оборотов (на режиме) малого газа — idling, speed governor
для поддержания оборотов малого газа при изменении нагрузки на агрегаты двигателя и температуры воздуха на входе в двигатель. — то maintain idling rpm under varying conditions of accessory load and air intake temperature.
- оборотов ротора (компресcopa) высокого давления (квд) — hp rotor /shaft/ (speed) governor
для поддержания постоянных оборотов ротора квд на заданном режиме и изменения режима двигателя при перемещении руд. — то maintain the hp rotor speed constant at the set power rating and to change the engine power with the throttle being moved.
- оборотов ротора (компресcopa) низкого давления (кнд) — lp rotor /shaft/ (speed) governor
- оборотов, центробежный — centrifugal governor
- падения давления (насосарегулятора) — pressure drop governor
- подачи кислорода (рпк, кислородного прибора) — oxygen regulator
- подачи кислорода по высотам — altitude compensating oxygen regulator
the altitude compensating regulator regulates the oxygen flow in relation to cabin altitude.
- (постоянного) перепада давлений — differential pressure regulator
- постоянства давления (наддува пд) — automatic manifold pressure regulator
- постоянства оборотов — constant-speed governor
- предельной температуры газов за турбиной — exhaust gas temperature (еgт) regulator
- предельных оборотов (в топливном насосе-регуляторе) — maximum speed governor
регулятор управляет командным давлением для ограничения максимальных оборотов квд двигателя. — the msg in the hp pump controls servo pressure to limit engine speed to a maximum of... n2.
- предельных режимов (рпр, двиг.) — (engine) limit governor
- привода постоянных оборотов (рппо) — constant speed drive governor
- пропорционального расхода (топпива) — proportional (fuel) flow regulater
- рамы — gimbal vertical controller
предназначен для вертикальной стабилизации следящей рамы курсовертикали.
- расхода (жидкости или газа) — flow regulator
- расхода (воздуха системы кондиционирования) — (air) flow rate control
- расхода топлива — fuel flow regulator (ffr)
- расхода топлива (узел дозирующей иглы насоса-регулятора) — throttle (valve) unit
- режимов двигателя, электронный (эррд) — electronic engine power governor (eepg)
- сброса давления (топлива форсажной камеры) — fuel pressure drop regulator
- скорости изменения давления (воздуха системы герметизации кабин) — air pressure rate control /regulator/
- смеси (пд) — mixture control
mixture control lever settings: "full rich", "auto rich", "auto lean", "idle cut-off".
- сопла и форсажа или форсажного контура (рсф) — exhaust nozzle and augmentor control
- степени повышения давления (гтд) — pressure ratio control unit
управляет створками реактивного сопла по сигналам рз и р6.
- температуры, автоматический (автомат регулирования температуры воздуха в системе кондиционирования) — automatic temperature control
- температуры, всережимный предельный (впрт) — all-power exhaust gas temperature regulator
- температуры воздуха в кабине — cabin temperature control /regulator/
- температуры выходящих газов — exhaust gas temperature regulator, egt regulator
- температуры газов за турбиной — exhaust gas temperature (egt) regulator
- температуры, предельный (двигателя) — top temperature regulator
- температуры топлива (топливомасляный агрегат) — fuel temperature regulator
топливомасляный агрегат работает в качестве регулятора температуры масла двигателя. — the fuel-oil heat exchanger functions as fuel temperature regulator.
- топлива (топливный) — fuel flow regulator (ffr), fuel control unit (fcu)
pt обеспечивает потребный расход и давление подаваемого к форсункам топлива на вcex режимах работы двигателя. — the fcu function is to regulate the correct fuel flows and pressures for all engine operating conditions.
-, управляемый вручную (принудительно) — manual regulator
- усиления, автоматический (ару) — automatic gain control (agc)
цепь для выдерживания постоянного уровня выходного сигнала приемника независимо от изменения уровня входного сигнала. — а type of circuit used to maintain the output volume of а receiver constant, regardless of variations in the signal strength applied to the receiver.
- форсажного топлива — afterburner fuel control unit
-, центробежный (оборотов) — centrifugal governor
- часов — clock regulator
для замедления или ускорения хода часов. position. — the clock regulator may be set in slow (s) or fast (f)
- частоты вращения — speed governor
- частоты вращения, центробежный — centrifugal speed governor
- числа оборотов — speed governor
- числа оборотов ротора вд — hp rotor (shaft) speed governor
- яркости — light intensity control
- яркости (устройства уви системы омега) — dimmer control (dim). allows illumination intensity of displays.Русско-английский сборник авиационно-технических терминов > регулятор
-
8 отключаемый привод вентилятора
Универсальный русско-английский словарь > отключаемый привод вентилятора
-
9 модульный центр обработки данных (ЦОД)
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)
-
10 приводить(ся) в действие
Приводить(ся) в действие - to activate, to drive, to power (с помощью привода); to operate (с вмешательством человека); to trigger (автоматически при отклонении от нормы)The mechanical coders are spring loaded and are activated as the case passes by.A 4-20 mA output signal can then be used to drive a tank-side meter for local indication.The rig is powered by an airdriven turbine adapted for this application from one of Solar's standard production engines.Operate the booms to produce the oil flow through the filters, otherwise the indicator readings will be inaccurate.Engine bay air temperature limits of 82oC have been set to retain a margin for the fire warning system, which can trigger at an area temperature of 104oC.Русско-английский научно-технический словарь переводчика > приводить(ся) в действие
-
11 усилитель
amplifier
устройство, повышающее значение некоторой величины за счет энергии постороннего источника. различают у. эл. напряжения, тока, давления и т.п. — a device which draws power from а source other than the input signal and which produces as an output an enlarged reproduction of the essential features of its input.
- (в системе управления ла) — servo
- (следящей системы сельсинной передачи) — servoamplifier, servo loop amplifier
- автопилота — autopilot amplifier
для выдачи сигнала на рулевой агрегат (машинку) поверхности управления. — provides power outputs to drive the control surface servos.
- арретирования — caging (circuit) amplifier
-, гидравлический (бустер) — hydraulic actuator /servo/
-, гидравлический (преобразователь в гидроприводе) — hydraulic amplifier
-, гидравлический (типа "сопло-заслонка") — hydraulic jet-interrupter blade amplifier
- горизонтирования (курсового гироскопа) — leveling amplifier
- датчика угла акселерометра (уда) — accelerometer angle pickoff amplifier
-, двухтактный, трехкаскадный — push-pull three-stage amplifier
-, интегрирующий — integrating amplifier
- контроля — monitor amplifier
для выдачи сигнала "отказ" и снятия выходного напряжения.
- крена (в цепи агд) — roll (servo) amplifier (in vertical gyro circuit)
- курса (т.е. усилитель отработки следящей системы курса инерциальной системы) — azimuth loop servo-amplifier
-, линейный — linear amplifier
- моментного датчика гироскопа (умд) — gyro torquer amplifier
- (-) мупьтипликатор — intensifier
устройство дпя повышения давления рабочей жидкости (газа) за счет разности диаметров поршней сторон низк. и высок. давлен. — used to convert low pressure hydraulic (pneumatic) power to high pressure power.
-, однотактный — single-cycle amplifier
-, операционный (оу) — operational amplifier
- отработки — servoamplifier
-, отработки (напр., рамы гироплатформы) — servoamplifier (of stable platform gimbal)
- отработки следящей системы (канала) крена (инерциальной системы) — roll loop servoamplifier, roll servo loop amplifier
- отработки следящей системы (канала) тангажа (инерциальной системы) — pitch loop servoamplifier, pitch servo loop amplifier
-, разделительный (системы спгу) — dividing amplifier used in а speaker dividing network.
-, релейный (релейного типа) — relay amplifier
an amplifier driving electromechanical relays.
- самолетного громкоговорящего устройства — audio amplifier
- с внутренней обратной связью — self-feedback amplifier
- сервопривода автопилота — autopilot (servo) amplifier
the autopilot amplifier provides power outputs to drive control surface servos.
- сигналов магнитной коррекции (гироиндук. компаса) — slaving amplifier
усилитель обеспечивает непрерывное сравнение выходных сигналов ид и гпк для магнитной коррекции гиродатчика. — the slaving amplifier constantly compares the flux gate detector and directional gyro (signals), and resets ior slaves) the gyro as necessary.
- следящей системы — servoamplifier, servo loop amplifier
- следящей системы (канала) курса (инерциальной системы) — azimuth loop servoamplifier, azimuth servo loop amplifier
- с общим коллектором — common-collector amplifier
- "сопло-заслонка" (гидравлический) — jet-interrupter blade (hydraulic) amplifier
- стабилизации гироплатформы (усп) — stable platform stabilization amplifier (psa)
- стабилизации (гиро) платформы no каналу тангажа (крена) — stable platform pitch (roll) stabilization amplifier
- стабилизации гироплатформы по курсу (усп) — stable platform azimuth stabilization amplifier
-, суммирующий — summing amplifier
- тангажа (в цепи агд) — pitch (servo) amplifier (in vertical gyro circuit)
-, терморегулирования (термостатирования) — temperature control amplifier
-, термостатированный (с терморегулятором) — temperature-controlled amplifier
-, фазочувствительный (фчу) — phase-sensitive amplifier
-, формирующий (формирования импульсов) — shaping amplifier
-, функциональный — function amplifier
-, электромашинный (эму) — rotary amplifierРусско-английский сборник авиационно-технических терминов > усилитель
-
12 технологии для автоматизации
технологии для автоматизации
-
[Интент]Параллельные тексты EN-RU
Automation technologies: a strong focal point for our R&D
Технологии для автоматизации - одна из главных тем наших научно исследовательских разработок
Automation is an area of ABB’s business with an extremely high level of technological innovation.
Автоматика относится к одной из областей деятельности компании АББ, для которой характерен исключительно высокий уровень технических инноваций.
In fact, it may be seen as a showcase for exhibiting the frontiers of development in several of today’s emerging technologies, like short-range wireless communication and microelectromechanical systems (MEMS).
В определенном смысле ее можно уподобить витрине, в которой выставлены передовые разработки из области только еще зарождающихся технологий, примерами которых являются ближняя беспроводная связь и микроэлектромеханические системы (micro electromechanical systems MEMS).
Mechatronics – the synthesis of mechanics and electronics – is another very exciting and rapidly developing area, and the foundation on which ABB has built its highly successful, fast-growing robotics business.
Еще одной исключительно интересной быстро развивающейся областью и в то же время фундаментом, на котором АББ в последнее время строит свой исключительно успешный и быстро расширяющийся бизнес в области робототехники, является мехатроника - синтез механики с электроникой.
Robotic precision has now reached the levels we have come to expect of the watch-making industry, while robots’ mechanical capabilities continue to improve significantly.
Точность работы робототехнических устройств достигла сегодня уровней, которые мы привыкли ожидать только на предприятиях часовой промышленности. Большими темпами продолжают расти и механические возможности роботов.
Behind the scenes, highly sophisticated electronics and software control every move these robots make.
А за кулисами всеми перемещениями робота управляют сложные электронные устройства и компьютерные программы.
Throughout industry today we see a major shift of ‘intelligence’ to lower levels in the automation system hierarchy, leading to a demand for more communication within the system.
Во всех отраслях промышленности сегодня наблюдается интенсивный перенос "интеллекта" на нижние уровни иерархии автоматизированных систем, что требует дальнейшего развития внутрисистемных средств обмена.
‘Smart’ transmitters, with powerful microprocessors, memory chips and special software, carry out vital operations close to the processes they are monitoring.
"Интеллектуальные" датчики, снабженные высокопроизводительными микропроцессорами, мощными чипами памяти и специальным программно-математическим обеспечением, выполняют особо ответственные операции в непосредственной близости от контролируемых процессов.
And they capture and store data crucial for remote diagnostics and maintenance.
Они же обеспечивают возможность измерения и регистрации информации, крайне необходимой для дистанционной диагностики и дистанционного обслуживания техники.
The communication highway linking such systems is provided by fieldbuses.
В качестве коммуникационных магистралей, связывающих такого рода системы, служат промышленные шины fieldbus.
In an ideal world there would be no more than a few, preferably just one, fieldbus standard.
В идеале на промышленные шины должно было бы существовать небольшое количество, а лучше всего вообще только один стандарт.
However, there are still too many of them, so ABB has developed ‘fieldbus plugs’ that, with the help of translation, enable devices to communicate across different standards.
К сожалению, на деле количество их типов продолжает оставаться слишком разнообразным. Ввиду этой особенности рынка промышленных шин компанией АББ разработаны "штепсельные разъемы", которые с помощью средств преобразования обеспечивают общение различных устройств вопреки границам, возникшим из-за различий в стандартах.
This makes life easier as well as less costly for our customers. Every automation system is dependent on an electrical network for distributing – and interrupting, when necessary – the power needed to carry out its various functions.
Это, безусловно, не только облегчает, но и удешевляет жизнь нашим заказчикам. Ни одна система автоматики не может работать без сети, обеспечивающей подачу, а при необходимости и отключение напряжения, необходимого для выполнения автоматикой своих задач.
Here, too, we see a clear trend toward more intelligence and communication, for example in traditional electromechanical devices such as contactors and switches.
И здесь наблюдаются отчетливо выраженные тенденции к повышению уровня интеллектуальности и расширению возможностей связи, например, в таких традиционных электромеханических устройствах, как контакторы и выключатели.
We are pleased to see that our R&D efforts in these areas over the past few years are bearing fruit.
Мы с удовлетворением отмечаем, что научно-исследовательские разработки, выполненные нами за последние годы в названных областях, начинают приносить свои плоды.
Recently, we have seen a strong increase in the use of wireless technology in industry.
В последнее время на промышленных предприятиях наблюдается резкое расширение применения техники беспроводной связи.
This is a key R&D area at ABB, and several prototype applications have already been developed.
В компании АББ эта область также относится к числу одной из ключевых тем научно-исследовательских разработок, результатом которых стало создание ряда опытных образцов изделий практического направления.
At the international Bluetooth Conference in Amsterdam in June 2002, we presented a truly ‘wire-less’ proximity sensor – with even a wireless power supply.
На международной конференции по системам Bluetooth, состоявшейся в Амстердаме в июне 2002 г., наши специалисты выступили с докладом о поистине "беспроводном" датчике ближней локации, снабженном опять-таки "беспроводным" источником питания.
This was its second major showing after the launch at the Hanover Fair.
На столь крупном мероприятии это устройство демонстрировалось во второй раз после своего первого показа на Ганноверской торгово-промышленной ярмарке.
Advances in microelectronic device technology are also having a profound impact on the power electronics systems around which modern drive systems are built.
Достижения в области микроэлектроники оказывают также глубокое влияние на системы силовой электроники, лежащие в основе современных приводных устройств.
The ABB drive family ACS 800 is visible proof of this.
Наглядным тому доказательством может служить линейка блоков регулирования частоты вращения электродвигателей ACS-800, производство которой начато компанией АББ.
Combining advanced trench gate IGBT technology with efficient cooling and innovative design, this drive – for motors rated from 1.1 to 500 kW – has a footprint for some power ranges which is six times smaller than competing systems.
Предназначены они для двигателей мощностью от 1,1 до 500 кВт. В блоках применена новейшая разновидность приборов - биполярные транзисторы с изолированным желобковым затвором (trench gate IGBT) в сочетании с новыми конструктивными решениями, благодаря чему в отдельных диапазонах мощностей габариты блоков удалось снизить по сравнению с конкурирующими изделиями в шесть раз.
To get the maximum benefit out of this innovative drive solution we have also developed a new permanent magnet motor.
Стремясь с максимальной пользой использовать новые блоки регулирования, мы параллельно с ними разработали новый двигатель с постоянными магнитами.
It uses neodymium iron boron, a magnetic material which is more powerful at room temperature than any other known today.
В нем применен новый магнитный материал на основе неодима, железа и бора, характеристики которого при комнатной температуре на сегодняшний день не имеют себе равных.
The combination of new drive and new motor reduces losses by as much as 30%, lowering energy costs and improving sustainability – both urgently necessary – at the same time.
Совместное использование нового блока регулирования частоты вращения с новым двигателем снижает потери мощности до 30 %, что позволяет решить сразу две исключительно актуальные задачи:
сократить затраты на электроэнергию и повысить уровень безотказности.These innovations are utilized most fully, and yield the maximum benefit, when integrated by means of our Industrial IT architecture.
Потенциал перечисленных выше новых разработок используется в наиболее полной степени, а сами они приносят максимальную выгоду, если их интеграция осуществлена на основе нашей архитектуры IndustrialIT.
Industrial IT is a unique platform for exploiting the full potential of information technology in industrial applications.
IndustrialIT представляет собой уникальную платформу, позволяющую в максимальной степени использовать возможности информационных технологий применительно к задачам промышленности.
Consequently, our new products and technologies are Industrial IT Enabled, meaning that they can be integrated in the Industrial IT architecture in a ‘plug and produce’ manner.
Именно поэтому все наши новые изделия и технологии выпускаются в варианте, совместимом с архитектурой IndustrialIT, что означает их способность к интеграции с этой архитектурой по принципу "подключи и производи".
We are excited to present in this issue of ABB Review some of our R&D work and a selection of achievements in such a vital area of our business as Automation.
Мы рады представить в настоящем номере "АББ ревю" некоторые из наших научно-исследовательских разработок и достижений в такой жизненно важной для нашего бизнеса области, как автоматика.
R&D investment in our corporate technology programs is the foundation on which our product and system innovation is built.
Вклад наших разработок в общекорпоративные технологические программы группы АББ служит основой для реализации новых технических решений в создаваемых нами устройствах и системах.
Examples abound in the areas of control engineering, MEMS, wireless communication, materials – and, last but not least, software technologies. Enjoy reading about them.
[ABB Review]Это подтверждается многочисленными примерами из области техники управления, микроэлектромеханических систем, ближней радиосвязи, материаловедения и не в последнюю очередь программотехники. Хотелось бы пожелать читателю получить удовольствие от чтения этих материалов.
[Перевод Интент]
Тематики
EN
Русско-английский словарь нормативно-технической терминологии > технологии для автоматизации
-
13 температура в придонном слое воды
Русско-английский военно-политический словарь > температура в придонном слое воды
-
14 двигатель
- (газотурбинный, поршневой, тепловой) — engine
- (гидравлический, пневматический, электрический) — motor
-, авиационный — aircraft engine
двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
- аналогичной конструкции — engine of identical design and сonstruction
- без наддува (ид) — unsupercharged engine
-, безредукторный — direct-drive engine
-, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
-, бензиновый — gasoline engine
-, боковой (рис. 13) — side engine
- в подвесной мотогондоле — pod engine
-, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
- вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
-, винто-вентиляторный (тввд) — prop-fan engine
-, включенный (работающий) — operating/running/engine
-, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
- внутреннего сгорания — internal-combustion engine
-, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
- воздушного охлаждения (пд) — air-cooled engine
двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
-, вспомогательный (всу) — auxiliary power unit (apu)
-, выключенный — shutdown engine
-, выключенный (неработающий) — inoperative engine
-, высокооборотный — high-speed engine
-, высотный — high-altitude engine
-, газотурбинный (гтд) — turbine engine
-, газотурбинный (вертолетныи) — helicopter turboshaft engine
-,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
- (-) генератор — motor-generator
устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
- горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
- двухвальной схемы (турбовальный) — two-shaft turbine engine
-, двухвальный турбовинтовой — two-shaft turboprop engine
-, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
-, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
-, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
-, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
-, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
-, двухконтурный — by-pass /bypass/ engine
гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
-, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
-, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
-, двухроторный — two-rotor engine
- двухрядная звезда (пд) — double-row radial engine
двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
-, двухтактный (пд) — two-cycle engine
-, дозвуковой — subsonic engine
-, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
-, звездообразный — radial engine
поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
-, звездообразный двухрядный — double-row radial engine
-, звездообразный однорядный — single-row radial engine
-, исполнительный (эл.) — (electric) actuator, servo motor
-, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
-, карбюраторный (пд) — carburetor engine
-, коррекционный (гироскопического прибора) — erection torque motor
-, критический — critical engine
двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
-, крыльевой (установленный на крыле) — wing engine
- левого вращения — engine of lh rotation
-, маломощный — low-powered engine
-, многорядный (пд) — multirow engine
-, многорядный звездообразный — multirow radial engine
-, модифицированный — modified engine
- модульной конструкции — module-construction engine
lp compressor - module i, hp compressor - module 2, etc.
-, мощный — high-powered engine
-, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
-, незакапоченный — uncowled engine
- непосредственного впрыска (пд) — fuel injection engine
-, неработающий — inoperative engine
-, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
-, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
-, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
-, одновальный турбовинтовой — single-shaft turboprop engine
-, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
-, однорядный (пд) — single-row engine
-, опытный — prototype engine
двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
-, основной — main engine
-, оставшийся (продолжающий работать) — remaining engine
-, отказавший — inoperative/failed/ engine
- отработки (эл., исполнительный) — servomotor
- отработки следящей системы — servo loop drive motor
- подтяга (патронной ленты) — ammunition booster torque motor
-, поперечный коррекционный (авиагоризонта) — roll erection torque motor
-, поршневой (пд) — reciprocating engine
- правого вращения — engine of rh rotation
-, продольный коррекционный (авиагоризонта) — pitch erection torque motor
-, прямоточный — ramjet engine
двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
- работающий — operating engine
-, работающий с перебоями — rough engine
двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
- рамы крена (гироплатформы — roll-gimbal servomotor
- рамы курса (гироплатформы — azimuth-gimbal servomotor
- рамы тангажа (гироплатформы) — pitch-gimbal servomotor
-, реактивный — jet-engine
двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
-, реактивный, пульсирующий — pulse jet (engine)
применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
-, ремонтный — overhauled engine
серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
- с внешним смесеобразованием (пд) — carburetor engine
двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
- с внутренним смесеобразованием — fuel-injection engine
двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
- с водяным охлаждением (пд) — water-cooled engine
- с высокой степенью сжатия — high-compression engine
- с нагнетателем (пд) — supercharged engine
- с наддувом (пд) с осевым компрессором (пд) — supercharged engine axial-flom turbine engine
- с передним расположением вентилятора — front fan turbine engine
- с противоточной камерой сгорания (гтд) — reverse-flow turbine engine
- с редуктором — engine with reduction gear
- с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
- с форсированной (взлетной) мощностью — engine with augmented (takeoff) power rating
- с центробежным компрессором (гтд) — radial-flow turbine engine
-, серийный — series engine
двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
- со свободной турбиной — free-luroine engine
двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
- следящей системы по внутреннему крену (гироплатформы) — inner roll gimbal servomotor
- следящей системы по наружному крену (гироплатформы) — outer roll gimbal servomotor
- следящей системы по курсу (гироплатформы) — azimuth gimbal servomotor
- следящей системы по тангажу (гироплатформы) — pitch gimbal servomotor
-, собственно — engine itself
-, средний (рис. 44) — center engine
- стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
-, стартовый (работающий при взлете) — booster
-, стартовый твердотопливный — solid propellant booster
-, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
-, турбовентиляторный — turbofan engine
двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
-, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
-, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
-, турбовинтовой (твд) — turboprop engine
газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
-, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
-, турбовинтовой, с толкающим винтом — pusher-turboprop engine
-, турбопрямоточный — turbo/ram jet engine
комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
-,турбо-ракетный — turbo-rocket engine
аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
-, турбореактивный — turbojet engine
газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
-, установленный в мотогондоле — nacelle-mounted engine
-, установленный в подвесной мотогондоле — pod engine
-, четырехтактный (поршневой — four-cycle engine
за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
-, шаговой (эл.) — step-servo motor
-, электрический — electric motor
устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
- (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
в зоне д. — in the region of the engine
выбег д. — engine run-down
гонка д. — engine run
данные д. — engine data
заливка д. (пд перед запуском) — engine priming
замена д. — engine replacement /change/
запуск д. — engine start
испытание д. — engine test
мощность д. — engine power
на входе в д. — at /in/ inlet to the engine
обороты д. — engine speed /rpm, rpm/
опробование д. — engine ground test
опробование д. в полете — in-flight engine test
опробование д. на земле — engine ground test
останов д. (выключение) — engine shutdown
остановка д. (отказ) — engine failure
остановка д. (выбег) — run down
остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
отказ д. — engine failure
перебои в работе д. — rough engine operation
подогрев д. — engine heating
проба д. (на земле) — engine ground test
прогрев д. — engine warm-up
прокрутка д. (холодная) — engine cranking /motoring/
работа д. — engine operation
разгон д. — engine acceleration
стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
тряска д. — engine vibration
тяга д. — engine thrust
установка д. — engine installation
шум д. — engine noise
вывешивать д. с помощью лебедки — support weight of the engine by a hoist
выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
выключать д. — shut down the engine
глушить д. — shut down the engine
гонять д. — run the engine
заливать д. (пд) — prim the engine
заменять д. — replace the engine
запускать д. — start the engine
запускать д. в воздухе — (re)start the engine
испытывать д. — test the engine
опробовать д. на земле — ground test the engine
останавливать д. — shut down the engine
подвешивать д. — mount the engine
поднимать д. подъемником — hoist the engine
подогревать д. — heat the engine
проворачивать д. на... оборотов — turn the engine... revolutions
прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
продопжать полет на (двух) д. — continue flight on (two) engines
разгоняться на одном д. — accelerate with one engine operating
разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
сбавлять (убирать) обороты (работающего) д. — decelerate the engine
увеличивать обороты (работающего) д. — accelerate the engine
устанавливать д. — install the engineРусско-английский сборник авиационно-технических терминов > двигатель
-
15 корпус
casing, case, housing, body
- (электрическая масса) — ground, frame /chassis/
- бака — tank shell
-, внутренний (между контурами гтд) — intermediate casing
- воспламенителя — igniter casing
-, входной (являющийся одновременно вна) — inlet guide vanes assembly consists of outer casing, inlet guide vanes, inner shroud ring.
- генератора (рис. 90) — field ring assembly
- гироскопа — gyro case /housing/
- камеры сгорания — combustion chamber casing
- камеры сгорания, внешний — combustion (section) outer casing
- камеры сгорания, внутренний — combustion (section) inner /intermediate/ casing
- камеры сгорания, наружный — combustion (section) outer casing
- кислородной маски — oxygen (oro-nasal) mask
- клапана — valve body /casing, housing/
- клапана (собственно клапан) — valve body
- компрессора — compressor casing
- компрессора, входной — compressor inlet casing
- компрессора высокого давления — hp compressor casing
- компрессора, выходной — compressor outlet casing
- компрессора низкого давления — lp compressor casing
- компрессора (вд или нд) с направляющим аппаратом — (hp, lp) compressor casing with stater blades
- коробки приводов агрегатов (двигателя) — accessory drive casing /case/
насос установлен на корпусе коробки приводов агрегатов. — the pump is located on the main accessory case of the engine.
- нагнетателя — supercharger casing
- насоса — pump body /casing/
-, общий — common casing
обогреватель и фильтр смонтированы в общем корпусе — the heater and filter are housed in а common casing.
- объекта (если имеется в виду ла) — aircraft structure
- опоры (вала гтд) — bearing support housing
- опоры привода — drive support
- первого каскада компрессора — lp compressor stator casing
- передней опоры (гтд) — front bearing support (housing
- перепуска воздуха (за компрессором гтд) — compressor bleed air receiver casing /housing/
- подшипника турбины — turbine bearing casing
- прибора — instrument case
- привода (агрегата двигателя) — drive shaft support
- привода генератора — generator drive shaft support
- (пилон) приемника температуры — temperature probe arm
-, разделительный (гтд) — compressor intermediate casing
узел между кнд и квд, служащий для разделения воздушного потока на два контура и размещения средней опоры и центрального привода. — this casing forms bypass and main ducts, incorporates internal wheelcase, accessory drives, and used to mount external wheelcase.
- редуктора — gearbox easing
- свечи (запальной) — spark-plug /igniter plug/ body
-, средний (с направляющими аппаратами iv, v, vi ступеней) — intermediate casing (with stage 4, 5, 6 guide vanes)
- реверса тяги (реверсивного устройства) — thrust reverser casing
- силовой балки (реверсивного устройства) — carrier casing
- средней опоры (корпус радиально-упорных подшипников гтд) — thrust bearing support housing
силовой элемент, воспринимающий тягу, вес двигателя, осевую и радиальную нагрузки от роторов кнд и квд. — it bears and supports the engine thrust and weight, and axial and radial loads caused by lp and hp shafts.
- средней опоры (разделительный корпус) тяга, создаваемая двигателем, передается на конструкцию самолета через корпус средней опоры. — compressor intermediate casing engine thrust is transmitted through the intermediate casing to the aircraft.
- статора (гтд) — stater casing
- статора квд — hp compressor stator casing
- статора (кнд) — lp compressor stator casing
- термопар — thermocouple (probes) mount casing
- (пилон) топливной форсунки — fuel spray nozzle feed arm
- тормоза (дискового) блок цилиндров смонтирован на корпусе тормоза колеса (рис.32) — torque tube the brake cylinder block is secured on the torque tube.
- тормоза (подтормаживания) — brake casing
- турбины — turbine casing /housing/
- фильтра — filter body /casing/
- штепсельного разъема — connector barrel
- центрального привода (гтд) — internal wheelcaseРусско-английский сборник авиационно-технических терминов > корпус
-
16 тяга
thrust
(пропульсивное усилие, создаваемое реактивным двигателем или возд. винтом) — pushing or pulling force developed by aircraft engine or propeller
- (проводки управления) — rod, link
- (соединительный элемент) — link
-, асимметричная — asymmetric thrust
для путевого управления (при пробеге) используются тормоза и асимметричная тяга двигателей. — the brakes and asymmetric thrust are used, if required, for directional control.
- без впрыска воды — dry thrust
- без потерь (чистая) — net thrust
тяга гтд без учета потерь на сопротивление, создаваемое набегающим потоком, — the gross thrust of а jet engine minus the drag due to the momentum of the incoming air.
-, бесфорсажная — non-afterburning thrust, dry thrust
-, бесфорсажная, максимальная — dry (thrust) rating
-, взлетная (дв.) — takeoff /liftoff/ thrust
тяга, развиваемая двигателем на взлетном режиме его работы. — а thrust developed by an engine at takeoff power (setting).
-, взлетная...кг — take-off thrust rated at...rq
- винтового типа, раздвижная (напр., рулевой агрегат элерона) — screwjack link
- винтового типа, электромеханическая, раздвижная (механизм рау) — electically-driven screwjack link
- воздушного винта — propeller thrust
-, гарантированная (дв.) — guaranteed thrust
- двигателя — engine thrust
- двигателя в условиях пониженной температуры — engine thrust on cold day /at low ambient temperature/
- замка выпущенного положения (шасси) — down-lock actuating rod
-, избыточная (дв.) — excess thrust
разность между располагаемой и потребной тягами для данного режима полета. — а difference between the thrust available and required for the given flight condition.
-, клапанная (пд) — valve push rod
-, компенсирующая — compensating rod
- крестовины (хвостового винта) — spider link
- малого газа, обратная — reverse idle thrust
- малого газа, прямая — forward idle thrust
set the reverse levers to fwd idle position.
- на большом газе — full throttle thrust /power/
- на взлетном режиме — takeoff /liftoff/ thrust
- на всех режимах — thrust at any operating condition
- на максимальном продолжительном режиме (дв.) — maximum continuous thrust
остальные двигатели работают на мпр. — the remaining engines at the available maximum continuous power or thrust.
- на стороне исправного шасси (при посадке на одну основную опору) — reverse thrust on the good (landing) gear side
- на установившемя режиме (дв.) — steady thrust
-, нежелательная реверсивная — unwanted reverse thrust
одиночный отказ или неисправность системы реверса тяги не должен создавать нежелательной реверсивной тяги на всех режимах, — no single failure or malfunction of the reversing system shall result in an unwanted reverse thrust under any operating conditions.
-, номинальная (дв.) — rated thrust, normal standard rating thrust
- (или мощность), номинальная (дв.) — rating rating is а designated limit of operating characteristics based on definite conditions.
-, обратная, на малом газе — reverse idle thrust
- несущего винта (создающая подъемную силу или учитываемая при копровых испытаниях) — rotor lift а rotor lift may be assumed to act through the center of gravity.
- несущего винта при управлении общим и циклическим шагом — rotor thrust
- несущего винта (создающая вертикальное, поступательнoe движение вертолета, или его движение вправо, влево или назад) — (vertical, forward, right, left or aft) rotor thrust
-, обратная — reverse /backward/ thrust
тяга в направлении обратном направлению движения самолета. — thrust applied to а moving aircraft in а direction to орpose the aircraft motion.
-, общая обратная (реверсивная) — otal reverse thrust
общ. обратная тяга может составлять (50 %) от прямой тяги при одинаковой степени повышения давления двигателя. — the total reverse thrust is аррох. (50) percent of the forward thrust at the same epr.
-, отрицательная (возд. винта при шаге около оо) — (propeller) drag
-, отрицательная (реверсивная) — reverse thrust
- подвески двигателя — engine mount/ support, suspension/ arm
- полная прямая — full forward thrust
-, полная реверсивная — full reverse thrust
использование полной реверсивной тяги допускается в течение...сек. — the reverser need only be operated at full reverse thrust for...
-, пониженная (ниже расчетного номинала) — derated thrust
-, потребная (дв.) — thrust required
тяга, необходимая для выдерживания данного режима полета. — а thrust needed to maintain the set light condition.
-, приведенная тяга двигателя, приведенная к стандартным атмосферным условиям (или мса) — thrust based upon standard atmosphere conditions, thrust in isa conditions
-, пружинная — spring-loaded link/rod
-, пружинная, загрузочная — feel spring link
-, прямая (создающая поступательное движение) — forward thrust
-, прямая (на режиме малого газа) — forward (idle) thrust
-, прямая, на малом газе — forward idle thrust reverser levers at fwd idle.
-, развязывающая, пружинная — spring-loaded override link
для обеспечения возможности управления исправными секциями руля (элерона) при заклинивании одной из секций.
-, располагаемая (дв.) — thrust available
наибольшая тяга, развиваемая двигателем на данных высоте и скорости полета при работе на номинальном режиме (иногда на взлетном ипи форсированном). — the maximum thrust developed by the engine at the given altitude and speed with the engine operating at maximum continuous (or takeoff, augmented) power.
-, распорная (шасси) (рис. 27) — lock strut
-, расчетная — design /rated/ thrust
- (или мощность), расчетная (дв.) — rating
-, реактивная — jet thrust
тяга, создаваемая турбореактивным двигателем. — the thrust of а jet engine.
- реверса, эффективная — effective reverse thrust
эффективная реверсивная тяга должна обеспечивать сокращение дистанции торможения не менее чем на 10%. — reverse thrust is regarded as effective if its use results in а reduction in groundborne stopping distance of at least 10%.
-, реверсивная (воздушного винта) — propeller reverse thrust
-, реверсивная (двигателя) — engine reverse thrust
-, реверсивная, создаваемая реверсированием потока воздуха за (передним) вентилятором — reverse thrust (obtained) from front fan cold steam airflow
-, регулируемая (дв.) — variable thrust
-, режимная — operating thrust
-, режимная (полетная) — flight thrust
-, регулируемая (проводка управления) — djustable control rod
- с вспрыскам воды — wet thrust
- с вспрыскам воды при взлете — wet takeoff thrust turn off water injection pumps after 2 minutes of wet takeaff thrust.
- сервопривода (звено сервосистемы) — servo link
-, силовая — drive rod
- синхронизации закрылков — flap interconnection rod
-, соединительная — link
-, статическая (дв.) — static thrust
тяга, развиваемая двигателем на земле (на месте). — а thrust developed by eпgine on the ground (at rest).
- статическая, взлетная (на уровне моря, в условиях стандартной атмосферы) — static takeoff thrust (at sea level, standard conditions)
- створки реверсивного устройства, силовая — thrust reverser bucket drive /linkage, actuator/ rod
- створки шасси — landing gear door drive /linkage, actuator/ rod
- страгивания (ла) — break-away thrust
-, суммарная (двигателей) — total/ powerplant/ thrust
- толкателя клапана (дв.) — valve tappet push rod
-, тормозная (компенсирующая) — brake compensating rod
-, удельная (дв.) — specific thrust
тяга, развиваемая двигателем и отнесенная к секундному весовому расходу воздуха в нем.
- управления — control rod
- управления общим шагом (несущего винта) — (rotor) collective pitch control rod
- управления, раздвижная, — screwjack link
- управления створкой шасси — landing gear door linkage/ drive, actuator/ rod
- управления циклическим шагом (несущего винта) — (rotor) cyclic pitch control rod
- управления шагом (хвостового или несущего винта) — (rotor) pitch control rod
-, фактическая (полученная) — actual /observed/ thrust
-, форсажная — reheat/ afterburning/ thrust
-, форсированная (усиленная) — augmented thrust
-, чистая — net thrust
тяга без потерь на преодоление сопротивления, создаваемого набегающим потоком. — the gross thrust of a jet спgine minus the drag due to the momentum of the incoming air.
-, эффективная — effective thrust
запас т. — thrust reserve
избыток т. — margin of engine thrust
избыток т. над сопротивлением — thrust/drag margin
килограмм на килограмм т. в час (кг/кг тяги/час) — kg/kg thrust/hr
падение т. — thrust dacay
форсирование т. — thrust augmentation
центр т. — thrust axis
восстанавливать т. — regain thrust
работать на прямой (обратной) т. (дв.) — operate at forward (reverse) thrust
развивать (создавать) т. — develop thrust
реверсировать т. — reverse thrust
форсировать т. — augment thrustРусско-английский сборник авиационно-технических терминов > тяга
-
17 режим
mode, condition, regime,
function, operation, rating, setting
- (вид работы аппаратуры, системы) — mode
- (заданные условия работы двигателя при определенном положении рычага управнения двигателем) — power setting. in changing the power setting, the power-control lever must be moved in the manner prescribed.
- (мощность или тяга двигателя в сочетании с определениями как взлетный, крейсерский максимально-продолжитепьный) — power, thrust. takeoff power /thrust/. maximum continuous power /thrust/
- (номинальный, паспортный, расчетный) — rating
работа в заданном пределе рабочих характеристик в определенных условиях. — rating is а designated limit of operating characteristics based оп definite conditions.
- (номинальная мощность или тяга двигателя, приведенная к стандартным атмосферным условиям) — power rating. power ratings are based upon standard atmospheric conditions.
- (при нанесении покрытия) — condition
- (работы агрегата по производительности) — rating. pump may be operated at low or high ratings.
- (тяги двигателя при апрелеленном положении руд) — thrust. run the engine at the takeoff thrust.
- (частота действий) — rate
- автоматического захода на посадку — automatic approach (eondition)
- автоматического обмена данными с взаимодействующими системами (напр., ins, tacan) — (mode of) transmission and/or reception of specifled data between systems in installations such as dual ons, ins, tacan, etc.
- автоматического управления полетом — automatic flight condition
- автоматической выставки (инерциальной системы) — self-alignment mode
- автоматической работы двигателя. — engine governed speed condition
at any steady running condition below governed speed.
- автоматической (бортовой) системы управления (абсу, сау) — afcs (automatic flight control system) mode
- автомодуляции — self-modulation condition
-, автономный (системы) — autonomus /independent/ mode
-, автономный (системы сау) — independent control mode
- авторотации (вертолета) — autorotation, autorotative condition
заход на посадку производится с выключенным двигателем на режиме авторотации несущего винта. — the approach and landing made with power off and entered from steady autorotation.
- авторотации (воздушного винта, ротора гтд, вращающегося под воздействием набегающего воздушного потока) — windmilling. propeller ог engine rotor(s) freely rotating because of а wind or airstream passing over the blades.
-, астроинерциальный — stellar inertial mode
- астрокоррекции — stellar monitoring mode
-, бесфорсажный (без включения форсажной камеры) — cold power /thrust/, попafterburning power /thrust/
-, бесфорсажный (без впрыска воды или воднометаноловой смеси на вход двигателя) — dry power, dry thrust
- бов (блока опасной высоты) — alert altitude (select) mode
-, боевой (работы двигателя) — combat /military/ rating, combat /military/ power setting
- бокового управления (системы сту) — lateral mode. the lateral modes of fd system are: heading, vor/loc, and approach.
- большой тяги (двиг.) — high power setting
- буферного подзаряда аккумулятора — battery trickle charge (condition)
- быстрого согласования (гиpoагрегата) — fast slave mode
- ввода данных — data entry mode
- вертикальной скорости (автопилота) — vertical speed (vs) mode
-, вертикальный (системы сду или сту) — vertical mode. the basic vertical modes are mach, ias, vs. altitude, pitch
-, взлетный (двигателя) — takeoff power
-, взлетный (тяга двиг.) — takeoff thrust
-, взлетный (полета) — takeoff condition
- висения (вертолета) — hovering
- "вк" (работы базовой системы курса и вертикали (бскв) при коррекции от цвм) — cmptr mode
-, внешний (работы сау) — coupled /interface/ control mode
-, возможный в эксплуатации) — condition (reasonably) expected in operation
- вор-илс (работы директорией системы) — vor-loc mode, v/l mode
- воспроизведения (магн. записи) — playback mode
- выдерживания (высоты, скорости) — (altitude, speed) hold mode
- выдерживания заданного курса — hog hold mode
- "выставка" (инерциальной системы) — alignment /align/ mode
в режиме "выставка" система автоматически согласуется e заданными навигационными координатами и производится выставка гироскопических приборов, — in align mode system automatically aligned with reference to navigation coordinates and inertial instruments are automatically calibrated.
- выставки, автоматический (инерциальной навигационной системы) — self-alignment mode. the align status can be observed any time the system is in self-alignment mode.
- вычисления параметров ветpa — wind calculator mode. wind calculator mode is based on manually entered values of tas
- вызова (навигационных параметров на индикаторы) — call mode
- вызова на индикаторы навигационных параметров без нарушения нормального самолетовождения (сист. омега) — remote mode. position "r" enables transmission and/or reception of specified data between systems in installations such as dual ons, ins/ons, etc.
-, генераторный (стартер-генератора) — generator mode
стартер-генератор может работать в генераторном или стартерном режиме, — starter-generator can operate in generator mode or in motor mode (motorizing functi on).
-, гиперболический (работы системы омега) — hyperbolic mode. in the primary hyperbolic mode the position supplied at initialization needs only to be accurate to within 4 nm.
- гиромагнитного (индукционного) компаса (гmk) — gyro-flux gate (compass) mode
- гиромагнитной коррекции (гмк) — magnetic slaved mode (mag)
- гmк (гиромагнитного компаca) — gyro-flux gate (compass) mode
- горизонтального полета — level flight condition
- горячего резерва (рлс) — standby (stby) mode
- гпк (гирополукомпаса) — dg (directional gyro) mode, free gyro mode of operation
- "да-нет" (работы, напр., сигнальной лампы) — "yes-no" operation mode
-, дальномерный (дме) — dме mode
-, дальномерный (счисления пути) (системы омега) — dead reckoning mode, dr mode of operation, relative mode
- двигателя (no мощности или тяге) — engine power /thrust/, power /thrust/ setting
- (работы двигателя) для захода на посадку — approach power setting
-, дежурный (работы оборудования) — standby rate (stby rate)
- завышенных оборотов — overspeed condition
- заниженных оборотов — underspeed condition
- заданного курса (зк) — heading mode
режим работы пилотажного командного прибора (пкп) дпя выхода на и выдерживания зк. — in the heading mode, the command bars in the flight director indicator display bank (roll) commands to turn the aircraft to and maintain this selected heading.
- заданного путевого угла (зпу) — course mode
- захвата луча глиссадного (курсового) радиомаяка — glideslope (or localizer) cарture mode
- "земля-контур" (рлс) — contour-mapping mode
- земного малого газа — ground idle power (setting)
with engines operating at ground idle (power).
- и/или тяга, максимальный продолжительный — maximum continuous power and/or thrust
-, импульсный (сигн. ламп) — light flashing
"откл. имп. режима" (надпись) — lt flash cutout
- инерциально-доплеровский (ид) — inertial-doppler mode
-, инерциальный (работы навигационной системы) — inertial mode
-, командный (автопилота) — (autopilot) command position
both autopilots in command position.
-, компасный — compass mode
в компасном режиме магнитная коррекция курса обеспечивается датчиком ид. — when compass mode is selected, magnetic monitoring is applied from detector unit.
-, компасный (apk) (автоматического радиокомпаса) — adf compass mode. the adf function switch is set to "comp" position, (to operate in the compass mode).
- "контроль" (инерц. системы) — test mode
обеспечивает автономную проверку системы без подкпючения контр.-повер. аппаратуры. — provides the system selftesting
- (-) "контур" -(работы рлс) — contour (mode) (cntr)
- коррекции (координат места) — up-dating mode
-, крейсерский (двиг.) — cruising /cruise/ power
-, крейсерский (на з-х двигатолях) (полета) — 3-engine cruise
-, крейсерский (полета) — cruising (condition)
-, крейсерский (с поэтапным увеличением оборотов при испытании двигателя) — incremental cruise power (or thrust)
-, крейсерский, номинальный (полета) — normal cruise (nc)
-, крейсерский рекомендуемый (максимальный) — (maximum) recommended cruising power
- крейсерского полета (для скоростной или максимальной дальности) — cruise method
-, критический (работы системы, двигателя) — critical condition
- критический, по углу атаки — stalling condition
- "курсовертикаль" ("kb") — attitude (атт) mode
в данном режиме от системы не требуется получение навигационных параметров. выдаются только сигналы крена (у) и тангажа (у). — in this mode ins alignment and navigation data, except attitude, are lost.
-, курса-воздушный — air data-monitored heading hoid mode
-, курсовой (при посадке по системе сп или илс) — localizer mode
- курсозадатчика (курсовой системы гмк или гик) — flux gate slaving mode. the mode when the directional gyro is slaved to the flux gate detector.
-, курсо-доплеровский — doppler-monitored heading hold mode
- магнитной коррекции (мк) — magnetic(ally) slaved mode (mag)
- максимальной (наибольшей) дальности — long range cruise (lrc). lrc is based on a speed giving 99 % of max, range in no wind and 100 % max. range in about 100 kt headwind.
- максимальной продолжительности (полета) — high-endurance cruise
-, максимальный крейсерский (mkp) (выполняется на предельной скорости) — high speed cruise (method)
-, максимальный продолжительный (мпр) (двиг.) — maximum continuous power (мcp)
-, максимальный продолжительный (по тяге) — maximum continuous thrust (мст)
increase thrust to мст.
- малого газа — idling power (setting)
попеременная работа двигателя на номинальной мощности и режиме малого газа или тяги, — one hour of alternate fiveminute periods at rated takeoff power and thrust аnd at idling power and thrust.
- малого газа на земле — ground idling power /conditions/
- малого газа при заходе на посадку — approach idling power /conditions/
- малой тяги (двиг.) — low power setting
- (-) "метео" (работы рлс) — weather (mode)
- "метео-контур" (рлс) режим — contour-weather mode
- (5-ти) минутной мощности (двиг.) — (five-) minute power
- "мк" (магнитной коррекции) — mag
- мощности, максимальный продолжительный (двиг.) — maximum continuous power
- мощности, чрезвычайный — emergency power
- набора высоты — climb condition
- "навигация" (инерциальной системы) — navigation (nav) mode
при заданном режиме система обеспечивает вычисление навигационных и директорных параметров и выдает информацию на пилотажные приборы и сау. — in this mode system computes navigation and steering data. provides attitude information to flight instruments and fcs.
- наибольшей (макеимальной) дальности — long range cruise (lrc)
горизонтальный полет на скорости наибольшей дальности, на которой километровый расход топлива при полете на заданной высоте наименьший. — а level flight at а given altitude and best range cruise speed giving the minimum kilometric fuel consumption.
- наибольшей продолжительности (полета) — high-endurance cruise
горизонтальный полет на скорости наибольшей продолжнтельности, на которой часовой расход топлива при полете на заданной высоте наименьший. — а level flight at а given altitude and high-endurance cruise speed giving the minimum fuel flow rate (in kg/h or liter/h)
- начала автоматической работы (нар режим начала автоматического регулирования работы гтд) — engine governed run/operation/ onset mode
- нвк (начальной выставки — initial heading alignment
-, непрерывной (обработки данных) — burst mods (data processing)
-, нерасчетный — off-design rating
-, неуетановившийся — unsteady condition
- (0.65) номинала, на бедной смеси — (65%) power, lean mixture setting
-, номинальный (двиг.) — (power) rating, rated power
-, номинальный (mпp) — maximum continuous power
- нормального обогрева (эп.) — normal-power heat (condition)
-, нормальный (работы агрегата) — normal rating
-, номинальный крейсерский (полета) — normal cruise (nc). used on regular legs and based on m = 0.85.
- обзора земной поверхности (рлс) — ground-mapping (map) mode
- обнаружения грозовых образеваний — thunderstorm detection mode (wx)
- "обогрев" (инерц. системы) — standby mode
режим предназначен для создания необходимых температурных условий работы элементов инерциальной системы (гироскопов, блоков автоматики и электроники). — the standby mode is а heating mode during which fast warm-up power is applied to the navigation unit until it reaches operating temperature.
- обогрева — heating mode
- обогрева лобовых стекол "слабо", "сильно" — windshield "warm up", "full power" heating rating
-, одночасовой максимальный (двиг.) — maximum one-hour power
- ожидания ввода координат исходного места самолета — initial position entry hold mode
- ожидания посадки — holding
-, оптимальный экономический (двиг.) — best economy cruising power
- освещения меньше-больше (яркость) — dim-brt light modes check lights in dim and brt modes.
-, основной навигационный (сист. "омега") — primary navigation mode
- отключенного шага (программы) — step off mode
- отсутствия сигналов ивс (системы омега) — no tas mode
- оценки дрейфа гироскопа — gyro drift evaluation mode
- перемотки (маги, ленты) — (tape) (re)wind mode
- пересиливания автопилота — autopilot overpower operation /mode/
-, переходный — transient condition
- планирования — gliding condition
- повышенных оборотов — overspeed condition
- полета — flight condition /regime/
состояние движения ла, при котором параметры, характеризующие это движение (например, скорость, высота) остаются неизменными в течение определенного времени. — it must be possible to make а smooth transition from one flight condition to any other without exceptional piloting skill, alertness, or strength.
- полета, критический — critical flight (operating) condition
- полета на курсовой маяк (при посадке) — localizer (loc) mode. flying in loc (or vor) mode.
- полета на станцию вор — vor mode
- полета, неустановившийся — unsteady flight condition
- полета по маяку вор — vor mode
- полета по системе илс — ils mode
- полета по условным меридианам — grid mode
данный режим применяется в районах, не обеспечивающих надежность компасной информации. — the grid mode can be used in areas where compass information is unreliable.
- полета, установившийся — steady flight condition
- полетного малого газа — flight idle (power)
-, полетный (двиг.) — flight power
-, пониженный (ниже номинала) (двиг.) — derating
- пониженных оборотов — underspeed condition
при возникновении режима пониженных оборотов рогулятор оборотов вызывает дополнительное открытие дроссельного крана. — for underspeed condition, the governor will cause the larger throttle opening.
-, поперечный (системы сду или сту) — lateral mode. the basic lateral modes are heading, vor/loc and approach.
-, посадочный (полета) — landing condition
- правой (левой) коррекции (оборотов двигателя вертолета) — engine operation with throttle control twist grip turned clockwise (counterclockwise)
-, практически различаемый — practically separable operating condition
к практически различаемым режимам полета относятся: взлетный, крейсерский (mapшрутный) и посадочный, — practically separable operating condition, such as takeoff, en route operation and landing.
- (работы двигателя), приведенный к стандартной атмосфере — power rating based upon standard atmospheric conditions
- приведения к горизонту — levelling
- продления глиссады — glideslope extension mode
the annunciator indicates when glideslope extension (ext) mode provides command signals to the steering computer.
- продольного управления (системы сту) — vertical mode. the vertical modes of fd system are: mach, ias, vs. altitude, pitch.
- просмотра воздушного пространства (переднего) — airspace observation mode (ahead of aircraft)
- просмотра воздушного пространства на метеообстановку (рлс) — radar weather observation mode
- просмотра земной поверхности (рлс) — ground mapping operation. the antenna is tilted downward to receive ground return signals.
- прямолинейного горизонтального полета — straight and level flight condition
- (частота) пусков ракет — (rocket firing) rate
- "работа" (положение рычага останова двигателя) — run
- "работа" (инерциальной навигационной системы) — navigate mode, nav mode. system automatically changes from alignment to navigate mode.
- работы — condition of operation
test unit in particular condition of operation.
- работы (агрегата, напр., наcoca) — rating
- работы (агрегата по продолжительности) — duty (cycle)
режим работы может быть продопжитепьным или повторно-кратковременным. — the duty cycle may be continuous or intermittent.
- работы (инерциальной системы) — mode of operation, operation mode
- работы, автоматический (двиг.) — governed speed /power/ setting
- работы автоматической системы управления (абсу, сау) — autoflight control system (afcs) mode
- работы автопилота — autopilot mode
- работы автопилота в условиях турбулентности — autopilot turbulence (turb) mode
при работе в условиях турбулентности включается демпфер рыскания для обеспечения надежной управляемости и снижения нагрузок на конструкцию ла. — use of the yaw damper with the autopilot "turb" mode will aid in maintaining stable control and in reducing structural loads.
- работы автопилота при входе в турбулентные слои атмосферы — autopilot turbulence penetration mode
данный режим применяется при полете в условиях сильной турбулентности воздуха, — use of the autopilot turbulence penetration mode is recommended for autopilot operation in severe turbulence.
- работы автопилота с директорной системой, совмещенный — ap/fd coupled mode
- работы двигателя (по мощности) — engine power (setting)
- работы двигателя (по тяге) — engine thrust (setting)
- работы двигателя (по положению руд) — engine power setting
- работы двигателя в особых условиях, (повышенный) — emergency (condition) power
- работы двигателя на земле — engine ground operation
- работы двигателя на малых оборотах — engine low speed operation
- работы двигателя, номинальный — engine rating. ths jt9d-з-за engines operate at jt9d-3 engine ratings.
- работы (двигателя), приведенный к стандартной атмосфере — power rating /setting/ based upon standard atmospheric conditions
- работы источника света, установившийся — light source operation at steady value
- работы, кратковременный — momentary operating condition
- работы no времени (агрегата) — time rating
- работы, повторно-кратковременный (агрегата) — intermittent duty
пусковая катушка работает в повторно-кратковременном режиме. — booster coil duty is intermittent.
- работы (системы), полетный — (system) flight operation
при выпуске передней опоры шасси система переключается на полетный режим, — when the nose lg is eхtended, the function of the system is transferred to flight operation.
- работы no сигналам станции омега — omega mode operation
- работы, продолжительный (агрегата) — continuous duty
генератор двигателя работает в продолжительном режиме, — the engine-driven generator duty is continuous.
- работы противообледенительной системы, нормальный — normal anti-icing
- работы противообледенительной системы, форсированный — high anti-icing
- работы самолетного ответчика (а - на внутренних линиях, в - на международных) — transponder mode (а - domestic, в - international)
- работы системы траекторного управления (сту), боковой — lateral mode
- работы сту, продольный — vertical mode
- рабочий (работы автопилота) — (autopilot) active position both autopilots in command positions, one active and one standby.
- рабочий (работы оборудования) — normal rate (norm rate)
- равновесной частоты (вращения) (двиг.) — on-speed condition
- равновесных оборотов — оп-speed condition
работа регулятора оборотов в режиме равновесных оборотов. — the constant speed governor operation under on-speed condition.
-, радиотелеграфный, тлг (автоматич. радиокомпаса) — c-w operation
-, радиотелеграфный (связи) — c-w communication, radio telegraphic communication
-, радиотелефонный, тлф (apk) — rt (radio telephone), voice operation (v), voice
-, радиотелефонный (связи) — voice communication, radio telephone communication
переключить передатчик на радиотелефонную связь, — set the transmitter for voice communication.
-, рамочный (арк) — loop mode
- распознавания светила — star identification mode
-, располагаемый максимальный продолжительный (двиг.) — available maximum continuous power
-, расчетный — rating
-, расчетный (условия работы) — design condition
- регулирования избыточного давления (системы скв) — differential pressure control (mode)
-, резервный (аварийный) (дв.) — emergency power rating
работа двигателя при гидромеханическом управлении оборотами и температурой при отказе электронной системы управления.
-, резервный (работы автопилота) — (autopilot) standby position
- самовращения (несущего винта) — autorotation, autorotative condition
- самоориентирования (переднего колеса шасси) — castoring
- скоростной дальности — high-speed cruise method
- "слабо", "сильно" (обогрева лобовых стекол) — (windshield heat) warm up, full power
- слабого обогрева (эл.) — warm-up heat (condition)
-, следящий (закрылков) — (flap) follow-up operation (mode)
when the flaps are raised, the flap follow-up system operates the slat control valve.
-, смешанный (работы спойлеров) — drag/aileron mode. а drag/aileron mode is used during descent both for retardation and lateral control.
- снижения — descent condition
-, совмещенного управления — override control mode
оперативное вмешательство в работу включенной системы.
-, совмещенный (при работе с др. системой) — coupled mode
-, совмещенной (работы автопилота) — autopilot override operation /mode/
в этом режиме отключаются рм и корректор высоты и летчик оперативно вмешивается в управление ла посредством штурвала и педалей. — то manually or otherwise deliberately overrule autopilot system and thereby render it ineffective.
-, совмещенный — both mode
(работы рлс в режимах обзора метеообразований и земной поверхности и индицирования маяков) — for operation in rad and bcn modes.
- согласования (автопилота) — synchronization mode
- согласования (работы следящей системы) — slave /synchronization/ mode
- стабилизации (крена, тайгажа, направления, автопилота) — roll (pitch, yaw) stabilization mode
- стабилизации (работы сту) — hold mode
the vertical and lateral modes are hold modes.
- стабилизации крена (в сту) — roll /bank/ (attitude) hold mode
- стабилизации курса (aп) — heading hold mode
- стабилизации тангажа (в сту) — pitch (attitude) hold mode
-, стартерный (всу) — engine start mode
apu may run in the engine start mode or as apu.
-, стартерный (стартер-гоноратора) — motor(izing) mode, (with) starter-generator operating as starter
- стопорения (работы следящей системы) — lock-out mode
- "сход(на) нзад" — return-to-selected altitude (mode)
- счисления пути (или дальномерный) (системы омега) — dead reckoning mode, dr mode of operation, relative mode
-, температурный — temperature condition
- тлг (работы арк) — c-w operation
- тлф (арк) — rt (radio telephone), voice
-, тормозной (работы спойле — drag /retardation/ mode
- управления — control mode
- управления в вертикальной плоскости (ап) — vertical mode
- управления в горизонтальной плоскости (инерциальной системы) — lateral control mode
управление по курсу, на маяки вор и крм. — the basic lateral modes are heading, vor/loc and approach.
- управления, позиционный (no командно-пилотажному прибору) — flight director control mode
- управления по крену (aп) — roll (control) mode
- управления, поперечный (автопилота) — lateral mode
- управления по тангажу (ап) — pitch (control) mode
- управления, продольный (автопилота) — vertical mode. vertical command control provides either vertical speed or pitch command.
- управления, штурвальный — manual (flight) control
-, усиленный (дополнительный, форсированный) (двиг.) — augmented power (rating)
при данном режиме увеличиваются температура газов на входе в турбину, обороты ротора или мощность на валу. — engine augmented takeoff power rating involves increase in turbine inlet temperature, rotor speed, or shaft power.
-, установленный (для данных условий испытаний двигателя) — rated power. а 30-hour run consisting of alternate periods of 5 minutes at rated takeoff power.
-, форсажный (с включенной форсажной камерой) — reheat /afterburning/ power /thrust/
-, форсажный (по тяге двиг.) — reheat thrust
-, форсажный (с впрыском воды или водометаноловой смеси на вход двигателя) — wet power, wet thrust
-, форсажный, полный (двиг.) — full reheat power /thrust/
- форсированного обогрева — full-power heat (conditions)
-, форсированный (работы агрегата) — high rating
-, форсированный (усиленный) (двиг.) — augmented power /thrust/
-, форсированный взлетный — augmented takeoff power
- холостого хода (двигателя вертолета с отключенной трансмиссией) — idle run power (with rotor drive system declutched)
- холостого хода (генератора, всу, электродвигателя) — по-load operation
-, чрезвычайный (работы двигателя в особых условиях) — emergency (condition) power
-, чрезвычайный (по тяге двигателя) — emergency thrust
-, чрезвычайный, боевой (двиг.) — combat /war/ emergency power
-, штурвальный (управления ла) — manual control mode
-, экономичный крейсерский — (best) economy cruising power
-, эксплуатационный (работы, агрегата, двигателя, самолета) — operational /operating/ condition
-, эксплуатационный (двиг.) — operational power rating
эксплуатационные режимы включают: взлетный, максимальный продолжительный (крейсерский), — operational power ratings cover takeoff, maximum continuous (and cruising) power ratings.
-, эксплуатационный полетный (двиг.) — flight power (rating)
двигатель должен нормально работать на всех эксплуатационных (полетных) режимах, — the engine must be capable of operation throughout the flight power range.
-, электромоторный (стартер генератора) — motor(izing) mode
-, элеронный (работы спойлеров) — aileron mode, lateral control augmentation mode
в p. (работы оборудования) — in mode
presently flying in heading (h) mode on a 030° heading.
в p. самоориентирования (о переднем колесе шасси) — in castor, when castoring
в пределах эксплуатационных р. — within (approved) operating limitations
выход на р. малого газа (двиг.) — engine (power) setting at idle, engine idle power setting
изменение p. работы двигатепя — change in engine power (or thrust)
метод установки (получения) (заданного p. работы двигателя) — methods for setting (engine) thrust /power/
на (взлетном) р. (двиг.) — at (takeoff) power
with the engine operating at takeoff power.
на (взлетном) р. (полета) — under (takeoff) condition
на максимальном продолжительном p. — at maximum continuous power
обороты (двигателя) на взлетном р. — takeoff (rotational) speed engine run at takeoff power with takeoff speed.
обороты (двигателя) на максимальном продолжительном p. — maximum continuous speed engine run at rated maximum continuous power with maximum continuous speed.
переключение p. (работы оборудования) — mode selection
переход (вертолета) от нормального р. к р. висения — reconversion
полет на крейсерском р. — cruise flight
полет на р. висения — hovering flight
при работе двигателя на взлетном р. — with engine at takeoff power, with takeoff power on (each) engine
при работе каждого двигателя на р., не превышающем взлетный — with not more than takeoff power on each engine
при установившемся р. работы с полной нагрузкой — at steady full-load condition
(75)% максимального продолжительного (или номинального) р. — (75) percent maximum continuous power (thrust)
работа на (взлетном) р. (двиг.) — (takeoff) power operation, operation at takeoff power
установка p. работы (двиг.) — power setting
этап p. (при испытаниях двигателя) — period. during the third and sixth takeoff power periods.
включать р. (работы аппаратуры системы) — select mode
включать р. продольного (поперечного) управления (aп, сду) — select vertical (lateral) mode
включить систему в режим (напр., "выставка") — switch the system to (align mode, switch the system to operate in (align mode)
выдерживать (взлетный) р. (двиг.) — maintain (takeoff) power
выходить на (взлетный) р. (двиг.) — come to /attain, gain/ (takeoff) power /thrust/, set engine at takeoff power /thrust/, throttle to takeoff power /thrust/
выходить на р. прямолинейного горизонтального полета гонять двигатель на (взлетном) р. — recover to straight and level flight run the engine at (takeoff) power
изменять р. работы двигателя — change engine power
изменять установленный р. (двиг.) — change power setting
лететь в автоматическом р. управления — fly automatically
лететь в курсовом р. — fly heading (н) mode
лететь в штурвальном р. — fly manually
передавать в телеграфном р. — transmit on c-w /rt/
передавать в радиотелефонном р. — transmit on voice
переключать р. — select mode
переключаться на р. — switch to mode the computer automatically switches to course mode.
переходить (автоматически) в режим (напр., курсовертикаль) — system automatically changes to атт mode
переходить с р. (малого газа) на (взлетный) р. (двиг.) — come from (idle) power to (takeoff) power
проводить р. (30 часовых) испытаний последовательно чередующимися периодами по... часов — conduct а (30-hour) run consisting of alternate periods of... hours
работать в р. — operate on /in/ mode
работать в режиме гпк — operate in dg mode, be servoed to directional gyro
работать в индикаторном р. (о сельсине) — operate as synchro indicator
работать в трансформаторном р. (о сельсине) — operate as synchro transformer
работать на (взлетном) р. (двиг.) — operate at (takeoff) power /thrust/
работать на р. малого газа — idle, operate at idle (power)
увеличивать р. работы (двиг.) (до крейсерского) — add power (to cruising), throttle (to cruising power)
уменьшать p. двигателя (до крейсерского) — reduce power to cruising
устанавливать взлетный р. (двиг.) — set takeoff power /thrust/, set engine at takeoff power
устанавливать компасный р. работы (apk) — select compass mode
устанавливать p. набора высоты — establish climb
устанавливать р. полета — establish flight condition
устанавливать рамочный р. работы (арк) — select loop mode
устанавливать (взлетный) р. работы двигателя — set (taksoff) power /thrust/, set the engine at takeoff power /thrust/
устанавливать p. снижения — establish descentРусско-английский сборник авиационно-технических терминов > режим
-
18 турбина
турбина сущturbineактивная турбинаimpulse turbineвенец диска турбиныturbine disk rimвоздушная турбинаair turbineдавление газов за турбинойturbine exhaust pressureдвигатель со свободной турбинойfree-turbine engineдвухступенчатая турбинаtwo-stage turbineза турбинойpast the turbineканал в ступице турбиныturbine boreкрутка лопатки турбиныturbine blade twistмногоступенчатая турбинаmultistage turbineодноступенчатая турбинаsingle-stage turbineосевая турбинаaxial-flow turbineперед турбинойbefore the turbineпромежуточное кольцо между рабочими колесами турбиныturbine wheels spacerпротивоточная турбинаreverse-flow turbineрабочая лопатка турбиныturbine rotor bladeрабочее колесо турбиныturbine wheelреактивная турбинаreaction turbineсвободная турбина1. free power turbine2. free turbine стекатель газов, выходящих за турбинойturbine exhaust fairingступень турбиныturbine stageступица диска турбиныturbine disc hubтемпература выходящих газов за турбинойturbine gas temperatureтемпература газов на входе в турбинуturbine entry temperatureтемпература на входе в турбинуturbine inlet temperatureтурбина вентилятораfan turbineтурбина высокого давленияhigh-pressure turbineтурбина низкого давленияlow pressure turbineтурбина привода постоянных оборотовconstant speed drive turbineтурбина с приводом от выхлопных газовpower recovery turbineтурбина с приводом от набегающего потокаram-air turbineцентробежная турбинаradial-flow turbine -
19 турбина
turbine
лопаточная машина, в которой энергия потока газа, протекающего через направляющий (сопловой) аппарат и рабочие лопатки ротора, преобразуется в механическую paботу на валу машины (рис.46). — а multibladed wheel or rotor of а gas-turbine engine, rotated by the impulse from or reaction to the gas passing across the blades. consists principally of one or more turbine wheels and a stator.
-, активная (газовая) — impulse turbine
-,бортовая вспомогательная (всу) — auxiliary pover unit(apu)
-, вторая (низкого давления в двухроторном гтд) — low pressure turbine, lp turbine
- (каскада) высокого давления — high-pressure turbine, hp turbine
турбина высокого давления спужит для привода компрессора высокого давления. — the high-pressure (hp) turbine drives the high-pressure (hp) compressor (rotor).
- газогенератора — gas-generator /-producer/ turbine
-, двухступенчатая — two-stage turbine
- компрессора (двигателя со свободной турбиной) — compressor turbine
-, многоступенчатая — multistage turbine
турбина с несколькими последовательно расположеннымн ступенями. — а turbine consisting of several stages.
- (привода) несущего винта (свободная или силовая турбина) — free (power) turbine
- (каскада) низкого давления — low-pressure turbine, lp turbine
для привода компрессора нд. — lp turbine drives lp cornpressor.
-, одноступенчатая — single-stage turbine
турбина с одним рабочим колесом и одним сопловым аппаратом. — а turbine having one set of stater blades followed by а set of rotor blades.
-, осевая — axial-flow turbine
турбина, в которой поток газа движется в направлении параллельном оси турбины. — а turbine through which the general direction of flow is axial.
-, первая (высокого давления в двухроторном гтд) — high pressure turbine, hp turbine
- привода постоянных оборотов (ппо) — constant speed drive turbine
-, промежуточная (промежуточного каскада между турбинами вд и нд) — intermediate pressure turbine
-, противоточная — reverse-fiow turbine
-, работающая на выхлопных газах (для пд) — power recovery turbine
турбина, вращающаяся выхлопными газами и кинематически связанная с коленвалом. — for reciprocating engines only. the ttirbina which ехtracts energy from the ехhatist gases arid as coupled to the crankshaft
-, реактивная — reaction turbine
турбина, в которой расширение газа происходит не только в сопловом аппарате, но и в рабочем колесе. — а type of turbine having rotor blades shaped so that they form а ring of nozzles, the turbine being rotated by the rgaetiorl of the fluid ejected from between the blades.
-, свободная (рис.46) — free turbine
-, свободная силовая — free powar turbine
-, силовая (свободная), с npотивоположным вращением рабочих колес — contra-rotating power turbine
- с приводом от набегающегo потока — ram air iurbine (rat) extend rat to pressursze hydraulic aystem.
"- (с приводом от набегающего потока) включена (работает)" (табло) — rat deployed
- стартера — starter turbine
- трехкаскадная (с приводом от трех валов) — triple-shaft turbine this turbine consists of а hp turbine, intermediate pressure turbine and lp turbine.
-, утилизирующая (выхлопные газы пд) — power recovery turbine
·-, центробежная — radial-flow turbine
турбина, в которой газ движется в направлении перпендикулярном к оси турбины, — а turbine through which the general direction of flow being radial.
-, четырехступенчатая давление (газов) за т. (p4) давление перед т. (рз) за т. — four-stage turbine turbine exhaust pressure (p,4) turbine inlet pressure (рз) past turbine, at turbine outlet
maximum allowable gas temperature past turbine.
перед т. температура выходящих газов за т. — before turbine, at turbine inlet turbine gas temperature (tgt)Русско-английский сборник авиационно-технических терминов > турбина
-
20 тенденция
Тенденция к - tendency for, tendency (+ inf.); trend of, trend for, trend toward; drive for (кампания по)In practice there would likely be a tendency for the reactive component to accumulate in the low-temperature compression space.The drive for improved gas turbine engine efficiency demands better overall heat exchanger performance.Русско-английский научно-технический словарь переводчика > тенденция
- 1
- 2
См. также в других словарях:
Temperature coefficient — The temperature coefficient is the relative change of a physical property when the temperature is changed by 1 K. In the following formula, let R be the physical property to be measured and T be the temperature at which the property is… … Wikipedia
Hard disk drive — Hard drive redirects here. For other uses, see Hard drive (disambiguation). Hard disk drive Mechanical interior of a modern hard disk drive Date invented 24 December 1954 [1] … Wikipedia
Eco-Drive — This article is about wristwatches. For eco driving , see Fuel economy maximizing behaviors. Citizen Promaster Eco Drive AP0440 14F Diver s 200 m. Four solar cell segments are just visible under the dial. Manufactured in 2000 … Wikipedia
Solid-state drive — A solid state drive (SSD) is a data storage device that uses solid state memory to store persistent data. Unlike flash based memory cards and USB flash drives, an SSD emulates a hard disk drive interface, thus easily replacing it in most… … Wikipedia
Hybrid Synergy Drive — logo Hybrid Synergy Drive Le terme Hybrid Synergy Drive (HSD) désigne un ensemble de technologies utilisées dans les automobiles hybrides développées par Toyota. Elles sont installées dans certains modèles de Toyota, notamment les Toyota Auris et … Wikipédia en Français
Four-wheel drive — This article is about the class of vehicle drivetrains. For other uses, see Four by four/Four wheel drive (disambiguation). All wheel drive redirects here. For the all wheel drive in motorcycles, see two wheel drive. The Jeep Wrangler is a 4WD… … Wikipedia
Castlewood Orb Drive — Orb Drive External SCSI The Orb Drive was a 3.5 removable hard disk drive introduced by Castlewood Systems in 1999. Its original capacity was 2.2 GB. A later version of the drive was introduced in 2001 with a capacity of 5.7 GB … Wikipedia
Wilson's temperature syndrome — Not to be confused with Wilson s disease, a medically recognized condition caused by a defect in copper metabolism. Wilson’s (temperature) syndrome, also called Wilson’s thyroid syndrome or WTS, is an alternative medical diagnosis consisting of… … Wikipedia
Autoignition temperature — The autoignition temperature or kindling point of a substance is the lowest temperature at which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to … Wikipedia
Magneto-optical drive — A Magneto optical disc and the numerous rectangles on its surface. A magneto optical drive is a kind of optical disc drive capable of writing and rewriting data upon a magneto optical disc. Both 130 mm (5.25 in) and 90 mm… … Wikipedia
Напор температурный — [temperature drive/ head] разность температур среды и стенки (или границы раздела фаз) или двух сред, между которыми идет теплообмен. Различают местный и средний температурный напор. Местный температурный напор разность температур среды и стенки… … Энциклопедический словарь по металлургии